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The non-linear vibrations of an elastic beam resting on a non-linear tensionless
Winkler foundation subjected to a concentrated load at the centre is presented in
this paper. Since the foundation is assumed to be tensionless, the beam may lift
off the foundation and there exists different regions namely contact and
non-contact regions. Since the contact regions are not known in advance, the
problem appears as a non-linear one even though there is no non-linear term in
the foundation model. In this case, the calculation of the roots of a non-linear
equation is needed to obtain contact lengths. The perturbation technique is used
to solve the non-linear governing equation associated with the problem. Using this
technique, the non-linear problem is reduced to the solution of a set of linearized
partial differential equations. The lift-off points and the displacements are
obtained in linear and non-linear cases, and the variation of these points with
respect to various parameters are presented. It is concluded that the contact length
varies with the magnitude of the load because of the non-linearity.
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1. INTRODUCTION

The vibrations of beams resting on elastic foundation have been investigated by
a number of investigators. In these studies it has been mostly assumed that the
foundation reacts in tension as well as in compression. Various types of foundation
models such as Winkler, Pasternak, Vlasov, Filonenko-Borodich, etc. have been
used in the analysis of structures on elastic foundations [1]. Among these, the
Winkler model, in which the medium is taken into account as a system composed
of infinitely close linear springs, is the simplest and often adopted one. It assumes
that the foundation applies only a reaction normal to the beam that is proportional
to the beam deflection. Non-linear foundation models like hyperbolic [2], and
cubic types [3–6] are also used. In some cases, it is more accurate to consider the
foundation as tensionless. In such a case, the problem displays a non-linear
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character and the solution becomes difficult since the contact region is not known
in advance due to the tensionless character of the foundation.

Weitsman [7], Villiaggio [8] and Celep [9, 10] studied the static behaviour of
beams and plates resting on a tensionless Winkler foundation for various loadings.
In these studies, it has been shown that the contact length do not depend on the
magnitude of the load. Weitsman [11], Rao [12], Choros and Adams [13] and Lin
and Adams [14] analyzed a beam subjected to moving load/loads resting on a
tensionless Winkler foundation. Celep et al. [15], Celep and Turhan [16] and Güler
and Celep [17] studied the dynamic responses of beams and plates subjected to
various loadings on such a foundation and obtained contact regions indicating
again that these regions are independent of the level of loading. In all these studies,
because of the tensionless character of the foundation the problem is non-linear.
There have been fewer studies on the non-linear vibrations of beams and plates
on non-linear elastic foundation. Raju and Rao [4] studied the effect of a
non-linear elastic foundation on the mode shapes of buckling and the free
vibration of columns/beams. Eisenberger [18] studied the vibration frequencies of
beams resting on variable one and two parameter elastic foundations. Dumir et
al. [6] studied the vibrations of cylindrically orthotropic thin circular plates resting
on Winkler, Pasternak and non-linear Winkler foundations. Bhaskar and Dumir
[19] studied the non-linear vibrations of orthotropic thin rectangular plates on
elastic foundation with linear and non-linear Winkler parameters. Shih and Blotter
[5] studied the non-linear vibrations of arbitrarily laminated thin rectangular plates
on elastic foundations.

In this paper, the harmonic vibrations of a finite beam resting on a non-linear
tensionless Winkler foundation are investigated. The beam is subjected to a
transverse periodic force at the centre, and the non-linearity of the problem arises
from the presence of the lift-off and a cubic term in the foundation model. Using
the perturbation technique, lift-off points and the vertical displacements are
expanded into series in order to obtain the effect of the non-linearity and then
arranging them with respect to the powers of the perturbation parameter, the
non-linear governing equation is reduced to a set of linearized partial differential
equations. These equations are converted to ordinary differential equations by the
use of method of separation of variables and then solved analytically by using the
boundary and continuity conditions. In the first order, a transcendent equation
is obtained to calculate lift-off points. The Newton–Raphson method is used to
obtain the solution of the transcendental equation. The influence of some
parameters on the lift-off points and the displacements in linear and non-linear
cases are obtained.

2. PROBLEM FORMULATION

Consider an elastic beam of length 2L on a non-linear Winkler foundation
subjected to a harmonic load P=P0 cos Vt at the centre (Figure 1). The
foundation reaction q is considered to be of the form q= k1w+ k3w3, where k1
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and k3 are the linear and non-linear coefficients of the stiffness. The governing
equations of the beam in contact and non-contact regions are, respectively

EIwin
i + rAẅi + k1wi + k3w3

i =0, Xi−1 E xEXi , i=1, 3, 5, . . . (1)

EIwin
j + rAẅj =0, Xi E xEXi+1, j= i+1 (2)

where EI is the flexural rigidity, w(x, t) the vertical displacement, r the mass
density, A the cross-sectional area of the beam, Xi the lift-off points. The vertical
displacements of the beam are zero at the lift-off points. Here, X0 =0 is not a
lift-off point and the displacement is not equal to zero at this point. The
Euler–Bernoulli beam is considered and the Bernoulli–Navier hypothesis is also
valid. Because of the continuity of the slope of the elastic curve and the symmetry
of the beam, the slope of the elastic curve is zero at the centre. The shear force
at the centre is −P/2 due to the symmetry. At the lift-off points, the displacement,
slope, bending moment and shear force must be continuous. Because of the
symmetry, only xe 0 region is considered. The boundary and continuity
conditions for the problem are as follows:

w'1 (0, t)=0, EIw11 (0, t)= 1
2P0 cos Vt, w1(X1, t)=0 (3)

in region 1 and,

wn (0, t)=0, w'n (0, t)=w'n−1(Xn−1, t),

w0n (0, t)=w0n−1(Xn−1, t), w1n (0, t)=w1n−1(Xn−1, t), n=2, 3, . . . , N (4)

w0N (X�N , t)=0, w1N (X�N , t)=0,

wn (Xn , t)=0, n$N (4)

Figure 1. Beam on a non-linear tensionless Winkler foundation.
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in region n, where X�N =L−XN−1 and N represents the last region which can
either be a contact or a non-contact region. The non-dimensional parameters are
introduced as

w� =w/w0, w0 =P0/Lk1, b4 = k1/4EI, j= bx, ji = bXi , h= bL,

ok� =4k3w2
0 /k1, P�=P0/EIb3w0, s=Vt. (5)

With the use of these parameters, the governing equations (1) and (2) reduce to
the dimensionless forms

win
i +(4V2/v2)ẅi +4wi + ok�w3

i =0, ji−1 E jE ji i=1, 3, 5, . . . (6)

win
j +(4V2/v2)ẅj =0, ji E jE ji+1 j= i+1 (7)

where ok� indicates the non-linearity parameter and v the natural frequency of the
system defined as v2 = k1/rA.

3. SOLUTION

For the solution of the equations (6) and (7), the displacements and the lift-off
points are expanded into perturbation series as follows:

wi (j, s; o)=wi,0(j, s)+ owi,1(j, s)+ . . .

wj (j, s; o)=wj,0(j, s)+ owj,1(j, s)+ . . .

jn = jn,0 + ojn,1 + . . . , n=1, 2, . . . , N−1 (8)

where wi,0 and wj,0 indicate the linear displacements in contact and non-contact
regions, wi,1 and wj,1 are the effects of the first order non-linearity on displacements,
jn,0 are the co-ordinates of lift-off points in linear case and jn,1 are the effects of
the non-linearity on these points. Since the response is harmonic, the method of
separation of variables can be used as

wi,0(j, s)=Wi,0(j) cos s, wi,1(j, s)=Wi,1(j) cos s+Wi,2(j) cos 3s

wj,0(j, s)=Wj,0(j) cos s, wj,1(j, s)=Wj,1(j) cos s+Wj,2(j) cos 3s. (9)

Substituting equations (8) and (9) into equations (6) and (7), a set of ordinary
differential equations is obtained as:

Win
i,0 + 4u4

10Wi,0 = 0 (10)

Win
j,0 − u4

20Wj,0 = 0 (11)

Win
i,1 + 4u4

11Wi,1 =−k11W 3
i,0 (12)

Win
j,1 − u4

21Wj,1 = 0 (13)

Win
i,2 + 4u4

12Wi,2 =−k12W 3
i,0 (14)

Win
j,2 − u4

22Wj,2 = 0 (15)



-     339

where k11 =3k�/4, k12 = k�/4, V�=V/v, u4
10 = u4

11 =1−V�2, u4
12 =1−9V�2,

u4
20 = u4

21 =4V�2, u4
22 =9u4

20. These equations are solved with respect to the values
of frequency ratio V�. There exist 12 unknown integral constants in each region.
The system has N regions and the beam lifts off or touchs the foundation in N−1
points. In this case, the number of unknowns including the constants and the
lift-off points become N×12+(N−1)×2=14×N−2. The boundary and
continuity conditions are expanded into Taylor series to get the necessary
equations for obtaining these unknowns. Using (5) and (8) in the equations (3)
and (4), the boundary and continuity conditions become

W'1,0(0)=0, W'1,1(0)=0, W'1,2(0)=0, W11,0(0)=P�/2, W11,1(0)=0

W11,2(0)=0, W1,0(j1,0)=0, W1,2(j1,0)=0, j1,1 =−W1,1(j1,0)/W'1,0(j1,0) (16)

in region 1 and,

Wn,0(0)=0, Wn,2(0)=0, jn−1,1 =−Wn,1(0)/W'n,0(0)

W'n,0(0)=W'n−1,0(jn−1,0), W'n,1(0)=W'n−1,1(jn−1,0),

W'n,2(0)=W'n−1,2(jn−1,0)

W0n,0(0)=W0n−1,0(jn−1,0), W0n,1(0)=W0n−1,1(jn−1,0),

W0n,2(0)=W0n−1,2(jn−1,0)

W1n,0(0)=W1n−1,0(jn−1,0), W1n,1(0)=W1n−1,1(jn−1,0),

W1n,2(0)=W1n−1,2(jn−1,0)

W0N,0(j�N )=0, W0N,1(j�N )=0, W0N,2(j�N )=0, W1N,0(j�N )=0, W1N,1(j�N )=0

W1n,2(j�N )=0, Wn,1(0)=Wn−1,1(jn−1,0) n=2, 3, . . . , N

Wn,0(jn,0)=0, Wn,2(jn,0)=0, jn,1 =−Wn,1(jn,0)/W'n,0(jn,0) n$N (17)

in region n, where j�N = h−(jN−1,0 + ojN−1,1). The evaluation of lift-off point in
region 1 is given in Appendix A. As indicated before, with the increase of the
number of regions, the number of the unknowns increases rapidly and solution
becomes difficult. Only two regions are considered for brevity. Since the solutions
of the equations (10)–(15) depend on the value of V�, there exist different cases
depending on this parameter. Four cases will be discussed.
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3.1.      V�
3.1.1. The case for V� Q 1/3

In this case, the solutions of equations (10)–(15) are obtained as follows:

W1,0 =C1 emj +C2 em̄j +C4 e−mj (18)

W1,1 =E1 emj +E2 em̄j +E3 e−m̄j +E4 e−mj − k116 C3
1 e3mj

(3m)4 +4u4
11

+
C3

3 e−3m̄j

(3m̄)4 +4u4
11

+
3C2

1C2 e(2m+ m̄)j

(2m+ m̄)4 +4u4
11

+
3C2

1C3 e(2m− m̄)j

(2m− m̄)4 +4u4
11

+
3C2

3C1 e(m−2m̄)j

(m−2m̄)4 +4u4
11

+
3C2

3C4 e−(m+2m̄)j

(m+2m̄)4 +4u4
11

+C.C7−
3k11

4
j6C2

1C4 emj

m3 −
C2

3C2 e−m̄j

m̄3 +
2C1C2C3 emj

m3

−
2C1C3C4 e−m̄j

m̄3 +C.C7 (19)

W1,2 =G1 enj +G2 en̄j +G3 e−n̄j +G4 e−nj − k126 C3
1 e3mj

(3m)4 +4u4
12

+
C3

3 e−3m̄j

(3m̄)4 +4u4
12

+
3C2

1C2 e(2m+ m̄)j

(2m+ m̄)4 +4u4
12

+
3C2

1C3 e(2m− m̄)j

(2m− m̄)4 +4u4
12

+
3C2

3C1 e(m−2m̄)j

(m−2m̄)4 +4u4
12

+
3C2

3C4 e−(m+2m̄)j

(m+2m̄)4 +4u4
12

+
3C2

1C4 emj

m4 +4u4
12

+
3C2

3C2 e−m̄j

m̄4 +4u4
12

+
6C1C2C3 emj

m4 +4u4
12

+
6C1C3C4 e−m̄j

m̄4 +4u4
12

+C.C7 (20)

W2,0 =D1 eu20j +D2 e−u20j +D3 eiu20j +D4 e−iu20j (21)

W2,1 =F1 eu21j +F2 e−u21j +F3 eiu21j +F4 e−iu21j (22)

W2,2 =H1 eu22j +H2 e−u22j +H3 eiu22j +H4 e−iu22j (23)
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where m=(1+ i)u10, m̄=(1− i)u10, n=(1+ i)u12, n̄=(1− i)u12 and C.C stands
for the complex conjugate of the preceding terms. In these solutions Ci , . . . , Hi

are integral constants, and with the lift-off points which are not known yet, the
number of unknowns reaches 26. Firstly, the linear case is observed by the use of
the equations (18) and (21). Using these equations in the boundary and continuity
conditions (16) and (17), and eliminating the unknown integral constants Ci and
Di , a transcendental equation is obtained in terms of the unknown j1,0. Chosing
V� , and h (the characteristic length) and using the Newton–Raphson technique, the
root j1,0 of this transcendental equation is obtained. Then, the constants Ci and
Di are obtained in terms of the P� and j1,0. After the linear solution is completed,
the first order solution is obtained by using the equations (19), (20), (22), (23) and
the proper boundary and continuity conditions which have not been used up to
that point. This solution procedure will be valid also for the cases cited below.

3.1.2. The case for 1/3QV�Q 1

In this case, all the solutions are similar to those in the preceding case except
W1,2. Defining u4

12 =4(9V�2 −1), one can obtain the solution W1,2 as:

W1,2 =G1 eu12j +G2 e−u12j +G3 eiu12j +G4 e−iu12j − k126 C3
1 e3mj

(3m)4 − u4
12

+
C3

3 e−3m̄j

(−3m̄)4 − u4
12

+
3C2

1C2 e(2m+ m̄)j

(2m+ m̄)4 − u4
12

+
3C2

1C3 e(2m− m̄)j

(2m− m̄)4 − u4
12

+
3C2

3C1 e(m−2m̄)j

(m−2m̄)4 − u4
12

+
3C2

3C4 e−(m+2m̄)j

(m+2m̄)4 − u4
12

+
3C2

1C4 emj

m4 − u4
12

+
3C2

3C2 e−m̄j

(−m̄)4 − u4
12

+
6C1C2C3 emj

m4 − u4
12

+
6C1C3C4 e−m̄j

(−m̄)4 − u4
12

+C.C7. (24)

3.1.3. The case for V�=1

W1,0 =C1 +C2j+C3j
2 +C4j

3 (25)

W1,1 =E1 +E2j+E3j
2 +E4j

3 − k116C3
1

24
j4 +

C2
1C3

120
j6

+
C2

1C4

280
j7 +

C2
3C1

560
j8

+
C1C3C4

504
j9 +

C3
3 +3C2

4C1

5040
j10 +

C2
3C4

2640
j11 +

C2
4C3

3960
j12 +

C3
4

17160
j137 (26)
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W1,2 =G1 eu12j +G2 e−u12j +G31 cos (u12j)−G32 sin (u12j)+
k12

u4
12

×(m1 +m2j+m3j
2

+m4j
3 +m5j

4 +m6j
5 +m7j

6 +m8j
7 +m9j

8 +m10j
9) (27)

W2,0 =D1 eu20j +D2 e−u20j +D31 cos (u20j)−D32 sin (u20j) (28)

W2,1 =F1 eu21j +F2 e−u21j +F31 cos (u21j)−F32 sin (u21j) (29)

W2,2 =H1 eu22j +H2 e−u22j +H31 cos (u22j)−H32 sin (u22j) (30)

where u4
20 =4V�2, u4

12 =4(1−9V�2), u4
22 =36V�2, u4

21 = u4
20 and mi ’s are given in

Appendix B.

3.1.4. The case for V�q 1

For this frequency, the solution can be obtained if the forcing and the
displacements are in different directions. That is, if the forcing is upwards, the
contact region will be the same as in the previous cases, otherwise this region will
be the non-contact region and the middle of the beam separates from the
foundation. In the case of upward loading, the solutions become:

W1,0 =C1 eu10j +C2 e−u10j +C3 eiu10j +C4 e−iu10j (31)

W2,0 =D1 eu20j +D2 e−u20j +D3 eiu20j +D4 e−iu20j (32)

W1,1 =E1 eu11j +E2 e−u11j +E3 eiu11j +E4 e−iu11j −
k11

80u4
10

{C3
1 e3u10j +C3

2 e−3u10j

+C3
3 e3iu10j +C3

4 e−3iu10j}+
3k11

8u4
10(1+3i)

{C2
1C4 e(2− i)u10j

+C2
2C3 e−(2+ i)u10j +C2

3C1 e(2i+1)u10j

+C2
4C2 e−(2i+1)u10j +((1+3i)/(1−3i))

× [C2
1C3 e(2+ i)u10j +C2

2C4 e−(2+ i)u10j +C2
3C2 e(2i−1)u10j

+C2
4C1 e(−2i+1)u10j]}

−
3k11

4u3
10

j{(C2
1C2 +2C1C3C4) eu10j −(C1C2

2 +2C2C3C4) e−u10j

+i(C2
3C4 +2C1C2C3) eiu10j −i(C2

4C3 +2C1C2C4) e−iu10j} (33)
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Figure 2. (a) Lift-off points of the beam versus frequency ratio at various beam lengths. (b) Lift-off
points of the beam versus frequency ratio at various beam lengths.
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W1,2 =G1 eu12j +G2 e−u12j +G3 eiu12j +G4 e−iu12j −
k12

81u4
10 − u4

12
{C3

1 e3u10j

+C3
2 e−3u10j +C3

3 e3iu10j +C3
4 e−3iu10j}−

3k12

u4
10 − u4

12
{(C2

1C2

+2C1C3C4) eu10j

+(C1C2
2 +2C2C3C4) e−u10j +(C2

3C4 +2C1C2C3) eiu10j

+(C2
4C3 +2C1C2C4) e−iu10j}

−
3k12

u4
10(24i+ r1)

{−C2
1C4 e(2− i)u10j −C2

2C3 e(−2+ i)u10j

−C2
3C1 e(2i+1)u10j −C2

4C2 e−(2i+1)u10j

+((24i+ r1)/(24i− r1))[C2
1C3 e(2+ i)u10j

+C2
2C4 e−(2+ i)u10j +C2

3C2 e(2i−1)u10j +C2
4C1 e(−2i+1)u10j]} (34)

W2,1 =F1 eu21j +F2 e−u21j +F3 eiu21j +F4 e−iu21j (35)

W2,2 =H1 eu22j +H2 e−u22j +H3 eiu22j +H4 e−iu22j, (36)

Figure 3. Lift-off points of the beam versus frequency ratio at various beam lengths for
downwards loading.
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Figure 4. Lift-off points of the beam versus characteristic beam lengths at fixed frequency ratio.

Figure 5. Elastic curves of the beam on tensionless foundation for the first solution.



–0.6

0.4

0.5

0.3

0.2

0.1

0.0

–0.2

–0.1

–0.3

–0.5

–0.4

0.6
0.20.0 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

W

=0.9

0.7

0.5

–0.10

0.15

0.10

0.00

0.05

–0.05

0.20
0.20.0 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

W

=0.7

0.5

0.1

.   . 346

Figure 6. Elastic curves of the beam on tensionless foundation for the second solution.

Figure 7. Elastic curves of the beam on foundation which transmits tensile stresses.
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Figure 8. Elastic curves of the beam when forcing is upwards.

Figure 9. Elastic curves of the beam when forcing is downwards.
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Figure 10. Lift-off points of the beam versus frequency ratio for non-linear case.

where u4
10 =4(V�2 −1), u4

20 =4V�2, u4
11 = u4

10, u4
21 = u4

20, u4
12 =4(9V�2 −1), u4

22 =36V�2,
r1 =7+ u4

12/u4
10.

In the case of downwards loading, the cubic term appears in the solutions W2,1

and W2,2, and solutions become:

W1,0 =C1 eu10j +C2 e−u10j +C3 eiu10j +C4 e−iu10j (37)

W2,0 =D1 eu20j +D2 e−u20j +D3 eiu20j +D4 e−iu20j (38)

W1,1 =E1 eu11j +E2 e−u11j +E3 eiu11j +E4 e−iu11j (39)

W1,2 =G1 eu12j +G2 e−u12j +G3 eiu12j +G4 e−iu12j (40)

W2,1 =F1 eu21j +F2 e−u21j +F3 eiu21j +F4 e−iu21j

−
k11

80u4
20

{D3
1 e3u20j +D3

2 e−3u20j

+D3
3 e3iu20j +D3

4 e−3iu20j}+
3k11

8u4
20(1+3i)

{D2
1D4 e(2− i)u20j

+D2
2D3 e(−2+ i)u20j +D2

3D1 e(2i+1)u20j +D2
4D2 e−(2i+1)u20j

+((1+3i)/(1−3i))[D2
1D3 e(2+ i)u20j

+D2
2D4 e−(2+ i)u20j +D2

3D2 e(2i−1)u20j +D2
4D1 e(−2i+1)u20j]}

−
3k11

4u3
20

j{(D2
1D2 +2D1D3D4) eu20j −(D1D2

2 +2D2D3D4) e−u20j

+i(D2
3D4 +2D1D2D3) eiu20j −i(D2

4D3 +2D1D2D4) e−iu20j} (41)
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Figure 11. Lift-off points of the beam versus load for non-linear case at various frequency ratios.

Figure 12. Lift-off points of the beam versus load for non-linear case at various frequency ratios.
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Figure 13. Deflection in the beam centre versus load.

W2,2 =H1 eu22j +H2 e−u22j +H3 eiu22j +H4 e−iu22j −
k12

81u4
20 − u4

22
{D3

1 e3u20j

+D3
2 e−3u20j +D3

3 e3iu20j +D3
4 e−3iu20j}−

3k12

u4
20 − u4

22
{(D2

1D2

+2D1D3D4) eu20j +(D1D2
2

+2D2D3D4) e−u20j +(D2
3D4 +2D1D2D3) eiu20j

+(D2
4D3 +2D1D2D4) e−iu20j}

−
3k12

u4
20(24i+ r1)

{−D2
1D4 e(2− i)u20j

−D2
2D3 e(−2+ i)u20j −D2

3D1 e(2i+1)u20j

−D2
4D2 e−(2i+1)u20j +((24i+ r1)/(24i− r1))[D2

1D3 e(2+ i)u20j

+D2
2D4 e−(2+ i)u20j +D2

3D2 e(2i−1)u20j +D2
4D1 e(−2i+1)u20j]} (42)

where u4
10 =4V�2, u4

20 =4(V�2 −1), u4
11 = u4

10, u4
21 = u4

20, u4
12 =36V�2, u4

22 =4(9V�2 −1),
r1 =7+ u4

22/u4
20.

4. NUMERICAL RESULTS AND DISCUSSION

The first terms in the perturbation expansions for the vertical displacements and
the lift-off points denote the linear behaviour of the beam, and the other terms
display the effect of the non-linearity. Firstly, the behaviour of the beam is
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investigated taking into account the linear foundation. In this case, even though
the governing equations are linear, due to a transcendent equation obtained from
the boundary and continuity conditions which gives us the lift-off points, the
behaviour of the beam is not linear. More than one root can be obtained from this
equation for the lift-off point for some frequency domains and beam lengths. As a
result of this, multiple solutions are obtained in some cases. The lift-off points are
dependent on the foundation modulus, physical and geometrical properties of the
beam and the forcing frequency. The variation of the position of the lift-off points
with respect to the frequency ratio is presented in Figures 2(a) and (b) for some
characteristic lengths. In Figure 2(a), when h=2 and P�=1, for instance, a unique
solution is obtained in the interval 0EV�E 0·43, two solutions in the interval
0·43EV�E 0·8 and a unique solution again is obtained in the interval 0·8EV�E 1.
As it is seen in Figure 2(b), the solution domains separate from each other
considerably in case of larger characteristic lengths. In addition to this, the marked
lines below the solutions represent the resonance case for 0·4EV�E 1, in
Figure 2(a). The vertical displacements around these lines increase a great deal.
When V�q 1, solutions can be obtained only if the load and displacement are in
opposite directions. The variation of the position of the lift-off points with respect
to the frequency ratio when loading is downwards, is presented in Figure 3. For all
lengths, as it is seen from the figure, the position of the lift-off points increase
as V� increases. In this case only one solution is obtained and the frequency domain
becomes small as h increases.

The coordinates of the lift-off points are independent of the magnitude of the load
for a fixed V� and the vertical displacements are directly proportional to the
magnitude of the load as it is clear from the boundary conditions, similar to the
case of static solution [7, 15]. But for a fixed load, the position of the lift-off points
vary depending on the values of V�.

The variation of the position of the lift-off points with respect to the characteristic
length hwhenV�=1, is presented inFigure 4.As it is seen from the figure, the contact
length increases as the characteristic length h increases.

As it was mentioned before, for a characteristic length, more than one solution
(lift-off point) can be obtained for a fixed frequency ratio. The elastic curves of the
beamare presented inFigures 5, 6 and 7 for the parameters h=2andV�Q 1. Figures
5 and 6 show the elastic curves of the beam for the first and second
solutions, respectively, and the foundation is taken to be tensionless. Figure 7 shows
the elastic curves of the beam on the foundation that transmits tensile stresses. In
these figures, it is observed that the lift-off points and the vertical displacements
increase with the increase of V�. The vertical displacements obtained for the
tensionless case are larger than for the foundation which transmits tensile stresses.
This result is expected, because, in case of the foundation that transmits tensile
stresses, the contact region becomes larger than that of the tensionless foundation.
In this case, the foundation reaction (i.e., the vertical displacement) of tensionless
case becomes larger for the vertical equilibrium of the beam.

The elastic curves of the beam are presented in Figures 8 and 9 for h=2 and
V�q 1. In Figure 8, the loading is upwards and as the values of V� increase, the beam
deflections decrease. If the values of V� increase a little more, the centre of
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the beam lifts off the foundation and the contact and the non-contact regions
interchange. When downwards loading is taken into account as in Figure 9, the
vertical displacements decrease as the values of V� increase. If the values of V�
incrase a little more, the centre of the beam touches on the foundation and the
regions change once more. The lengths of the contact regions increase for both
cases.

The effect of non-linearity on the lift-off points is presented in Figure 10. Here,
the first order terms in the perturbation expansions are taken into account. In the
case of positive non-linearity, the contact region decreases while it increases for
the negative one with respect to the linear case. This is because when the positive
sign is used, the foundation becomes stiffer, and the foundation becomes softer
when the negative sign is used.

In Figures 11 and 12, the effect of the loading on the position of the lift-off
points for positive and negative non-linearities when V�Q 1 and V�q 1,
respectively, is presented. The position of the lift-off points varies with the
magnitude of the load for both cases. The variation of the contact region is
proportional to the square of the load P�. This is because the term
j1,1 =−W1,1(0)/W'1,0(0) includes the cubic power of P� in the numerator and P� in
the denominator.

The effect of P� and the sign of o on the vertical displacements can be observed
in Figure 13. Using the linear solution W1,0 and the non-linear solutions W1,1 and
W1,2, the vertical displacement of the beam centre is calculated as
w1,0(0)= {[W1,0(0)+ oW1,1(0)]2 + [oW1,2(0)]2}1/2. While the vertical displacements
are directly proportional to the magnitude of the load for the linear case, in the
non-linear case, the displacements are not exactly proportional to the load. The
displacements decrease when the positive non-linearity is used and increase when
the negative one is used with respect to the linear case. For some detailed and
additional results refer to Coskun [20].

5. CONCLUSIONS

The response of a finite beam on a non-linear tensionless Winkler foundation
subjected to a concentrated dynamic load has been studied. The perturbation
technique and the method of separation of variables have been used in the solution
for the evaluation of a set of ordinary differential equations instead of the
nonlinear partial governing equations. Using the Newton–Raphson method, the
coordinate
of the lift-off points and the vertical displacements of the beam in the linear and
non-linear cases have been obtained. It is concluded that the position of the lift-off
points and the vertical displacements change with the parameter V�, both in the
linear and non-linear cases. In contrast to the linear case, the position of the lift-off
points change depending on the magnitude of the load and the vertical
displacements change with the square of the load in the nonlinear case. The
dynamic effect in the linear case, and the dynamic effect and the non-linearity
arising from the foundation modulus in the non-linear case affect the variation of
the contact lengths and the vertical displacements of the beam.
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APPENDIX A

The vertical displacement where the beam separates from the foundation is zero
at the right side of the first region.

w1(X1)=0:w1,0(j1 = j1,0 + oj1,1)+ ow1,1(j1 = j1,0 + oj1,1)=0. (A1)
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Using equations (9) and the Taylor expansion, the above equation become:

{W1,0(j1,0)+ oj1,1W'1,0(j1,0)+ . . . } cos Vt+ o{{W1,1(j1,0)+ oW'1,1(j1,0)

+ . . . } cos Vt+ {W1,2(j1,0)+ oj1,1W'1,2(j1,0)+ . . . } cos 3Vt}=0. (A2)

Arranging this equation with respect to the perturbation parameter o and
neglecting the second order terms, the lift-off point is obtained as

j1,1 =−W1,1(j1,0)/W'1,1(j1,0). (A3)

APPENDIX B

The values of mi which appear in equation (27) are given as follows:

m1 =C3
1 +

72
u4

12

C2
3C1 +

120960
u8

12

C2
4C3 (B1)

m2 =
720
u4

12

C1C3C4 +
362880

u8
12

C3
4 (B2)

m3 =3C2
1C3 +

1080
u4

12

C2
4C1 +

360
u4

12

C3
3 (B3)

m4 =3C2
1C4 +

2520
u4

12

C2
3C4 (B4)

m5 =3C2
3C1 +

5040
u4

12

C2
4C3 (B5)

m6 =6C1C3C4 +
3024
u4

12

C3
4 (B6)

m7 =C3
3 +3C2

4C1 (B7)

m8 =C2
3C4 (B8)

m9 =3C2
4C3 (B9)

m10 =C3
4 . (B10)
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